Investigating the influence of LiDAR groundsurface errors on the utility of derived forestinventories
نویسندگان
چکیده
Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR’s ability to capture three-dimensional structure has led to interest in conducting or augmenting forest inventories with LiDAR data. Prior to applying LiDAR in operational management, it is necessary to understand the errors in LiDAR-derived estimates of forest inventory metrics (i.e., tree height). Most LiDAR-based forest inventory metrics require creation of digital elevation models (DEM), and because metrics are calculated relative to the DEM surface, errors within the DEMs propagate into delivered metrics. This study combines LiDAR DEMs and 54 ground survey plots to investigate how surface morphology and vegetation structure influence DEM errors. The study further compared two LiDAR classification algorithms and found no significant difference in their performance. Vegetation structure was found to have no influence, whereas increased variability in the vertical error was observed on slopes exceeding 30°, illustrating that these algorithms are not limited by high-biomass western coniferous forests, but that slope and sensor accuracy both play important roles. The observed vertical DEM error translated into ±1%–3% error range in derived timber volumes, highlighting the potential of LiDAR-derived inventories in forest management. Résumé : Le lidar (la détection et la télémétrie par la lumière laser) peut servir à cartographier efficacement la morphologie du terrain et la structure de la végétation. Cependant, le développement et l’utilisation de ces cartes ont devancé notre compréhension des erreurs qu’elles contiennent. La capacité du lidar à cartographier la structure tridimensionnelle de la végétation a suscité un intérêt pour réaliser ou étoffer les inventaires forestiers à l’aide de données lidar. Toutefois, avant d’appliquer le lidar dans la gestion opérationnelle, il est nécessaire de comprendre les erreurs d’estimation des métriques d’inventaire forestier dérivées du lidar (comme la hauteur des arbres). La plupart des métriques d’inventaire forestier dérivées du lidar exigent la création de modèles numériques de terrain (MNT). Comme ces métriques sont calculées à partir de la morphologie du terrain, les erreurs dans les MNT se propagent dans les métriques qui sont produites. Cette étude combine les MNT du lidar et 54 placettes au sol pour étudier comment la morphologie du terrain et la structure de la végétation influencent les erreurs dans les MNT. De plus, nous avons comparé deux algorithmes de classification des données lidar et nous n’avons trouvé aucune différence significative entre leur performance. La structure de la végétation n’exerce aucune influence sur l’erreur des MNT. Par contre, lorsque la pente dépasse 30°, la variation de l’erreur verticale augmente. Ces résultats montrent que ces algorithmes ne sont pas limités par les forêts de conifères à forte biomasse de l’ouest des ÉtatsUnis, mais que la précision du capteur et la pente influencent l’erreur des MNT de façon importante. L’erreur verticale des MNT s’est traduite par une marge d'erreur de ±1–3 % dans les volumes de bois qui ont été calculés. Cette faible marge d’erreur met en évidence le potentiel des inventaires basés sur le lidar pour la gestion forestière. [Traduit par la Rédaction]
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملInvestigating the Role of real Money Balances in Households' Preferences function in the Framework of the Assets Pricing Models (M-CCAPM): Case study of Iran
In this paper, we try to develop and modify the basic model of the consumption-based capital asset pricing model by adding the growth in real money balances rate as a risk factor in the household's utility function as (M-CCAPM). For this purpose, two forms of utility function with constant relative risk aversion (CRRA) preferences and recursive preferences have been used such that M1 and M2 are...
متن کاملGeometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products
LiDAR (Light Detection And Ranging) systems are capable of providing 3D positional and spectral information (in the utilized spectrum range) of the mapped surface. Due to systematic errors in the system parameters and measurements, LiDAR systems require geometric calibration and radiometric correction of the intensity data in order to maximize the benefit from the collected positional and spect...
متن کاملInvestigating the Shocks of Real Sectors of the Economy on the Welfare Index in the Iranian Economy
The vector auto regression model was used to investigate the effect of real sector shocks on the social welfare in Iran during the period of 1980-2019.The results of the impulse response test showed that the Amartya Sen welfare index showed a rapid response to the shocks of total factor productivity growth in the first period, which had a zero effect over time. The utility-oriented welfare inde...
متن کامل